Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae.
نویسندگان
چکیده
We show that, in the malaria vector Anopheles gambiae, expression of Cecropin 1 is regulated by REL2, an NF-kappaB-like transcription factor orthologous to Drosophila Relish. Through alternative splicing, REL2 produces a full-length (REL2-F) and a shorter (REL2-S) protein isoform lacking the inhibitory ankyrin repeats and death domain. RNA interference experiments show that, in contrast to Drosophila Relish, which responds solely to Gram-negative bacteria, the Anopheles REL2-F and REL2-S isoforms are involved in defense against the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli bacteria, respectively. REL2-F also regulates the intensity of mosquito infection with the malaria parasite, Plasmodium berghei. The adaptor IMD shares the same activities as REL2-F. Microarray analysis identified 10 additional genes regulated by REL2, including CEC3, GAM1, and LRIM1.
منابع مشابه
Transcriptional Mediators Kto and Skd Are Involved in the Regulation of the IMD Pathway and Anti-Plasmodium Defense in Anopheles gambiae
The malarial parasite Plasmodium must complete a complex lifecycle in its Anopheles mosquito host, the main vector for Plasmodium. The mosquito resists infection with the human malarial parasite P. falciparum by engaging the NF-κB immune signaling pathway, IMD. Here we show that the conserved transcriptional mediators Kto and Skd are involved in the regulation of the mosquito IMD pathway. RNAi-...
متن کاملNF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae
The blood feeding requirements of insects are often exploited by pathogens for their transmission. This is also the case of the protozoan parasites of genus Plasmodium, the causative agents of malaria. Every year malaria claims the lives of a half million people, making its vector, the Anopheles mosquito, the deadliest animal in the world. However, mosquitoes mount powerful immune responses tha...
متن کاملAnopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species
Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage ...
متن کاملMidgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of ...
متن کاملMalaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.
Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 32 شماره
صفحات -
تاریخ انتشار 2005